Computation-Performance Optimization of Convolutional Neural Networks with Redundant Kernel Removal

Chih-Ting Liu, Yi-Heng Wu, Yu-Sheng Lin, and Shao-Yi Chien

Media IC and System Lab

Graduate Institute of Electronics Engineering

National Taiwan University, Taiwan

Outline

- Introduction
 - Challenge of IOT+AI
- Pruning
- Proposed Method
 - Layer-wise Kernel Removal
 - Computation-Performance Optimization
- Experimental Results
- Conclusion

Internet of Things (IoT)

Internet of Things (IoT) + Artificial Intelligence (AI)

IOT + Edge Al

- For visual tasks, Convolutional Neural Networks (CNN) is one of the AI solutions.
- Apply the CNN inference procedure on devices.
- Challenges
 - # Parameters of deep CNN.(138M for VGG-16)
 - # Operation of deep CNN. (Convolution layers)
- → Hard to implement on CPU or ASIC Cost huge (1) data access time and (2) computation time

Goal

Can we analyze and remove the possible redundancy of Deep CNN models?

Pruning—Related Works

- Parameters-pruning based method [1]
 - Remove the parameters with small magnitude.
 - Cause sparse weight matrix with same size.
- → Reduce parameters. But can Not reduce operations!!
- Kernel-pruning based method [2]
 - Remove the entire kernel (filter) when sparsity > threshold.
- → Can reduce operations! (reduction of convolution kernel)

[1] Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in neural information processing systems. 2015.

Proposed Method

- Based on [2], we make up the disadvantage of manually determining the threshold when removing kernels.
- Propose (1) Layer-wise Kernel Removal (LKR)
 - (2) Computation-Performance Optimization Flow (CPO)

For a specific convolutional layer l,

N Kernels

For a specific convolutional layer l,

For a specific convolutional layer l,

N Kernels

For a specific convolutional layer l,

Sorted Sparsity List

Define **reducing factor** r_l , $0 \le r_l \le 1$: The proportion of removed kernel.

Given r_l , we will remove Nr_l kernels.

For a specific convolutional layer l,

Sorted Sparsity List

For a specific convolutional layer l,

Sorted Sparsity List If N=10, $r_l=0.3$ 0.95 k_3 *l*th Conv. layer 3 kernels be 0.90 removed k_N 0.85 Input₁ Prune $\mathbb{R}^{C \times X \times Y}$ 0.1 $\mathbb{R}^{C \times W \times H}$

N Kernels

For a specific convolutional layer l,

Summary of LKR

- Given a **reducing factor** r_l for each layer, we can prune the Conv. layers. (N-N r_l kernels left)
- Fast and Easy.
- If we train from scratch with **smaller** network, not use pruning method, it may take time and may not train successfully.

Computation-Performance Optimization (CPO) Flow

Monitoring the Performance to adjust the Computation Reduction.

CPO Flow

- Step 1 Uniform Removal (UR)
 - Set **equal** r_l for every layer, obtain the performance drop.
 - Iteratively take experiments on **different** uniform r_l .
 - Pick an **acceptable** r_l^* among the experiments above.
 - * "acceptable" depends on the performance requirement by user.
 - Go to step2 to further adjust r_l^* for every layer.

CPO Flow

- Step 2 Probing Model Sensitivity
 - Split model into few parts (ex. front , middle ,end)
 - Under same parameters left, find which part is less sensitive → Remove more on the part with lower sensitivity.
 - Increase r_l^* for one part to probe sensitivity.
 - decrease r_l^* for other parts to maintain params left.
 - Observe the performance drop based on diff. probing.
 - Choose the new reducing factor with smaller performance drop!

Experimental Results

- CNN model: VDSR (Very Deep Super Resolution) model [3]
 - 20 layer fully convolutional Network → Excluding the influence of FC layers.

ILR: Interpolated Low Resolution Image

HR: High Resolution Image

- Retrain Epoch: 8
- Evaluation Dataset: (1) Set5 X2 (2) Set14 X2
- Performance Evaluation : PSNR (dB)

CPO step 1 Result – Uniform Removal(UR)

Model	Kernel per layer	Set5 PSNR	Set14 PSNR	Parameters	FLOP
Original	64	37.50 dB	33.08 dB	6.7 x 10 ⁵	1.11x 10 ⁹
Reducing Factor (r)	Kernel per layer	Set5 PSNR Drop ↓ (dB)	Set14 PSNR Drop ↓ (dB)	Params Remained	FLOP Remained
0.00	64	0	0	100 (%)	100 (%)
0.12	56	0.13	0.19	76.60 (%)	76.58(%)
0.19	52	0.21	0.21	66.07 (%)	66.04(%)
0.25	48	0.19	0.25	56.32 (%)	56.28(%)
0.31	44	0.20	0.25	47.34 (%)	47.30(%)
0.38	40	0.36	0.36	39.15 (%)	39.10(%)
0.44	36	0.40	0.39	31.73 (%)	31.68(%)

CPO step 2 – Probe Model Sensitivity

Split the model into three parts: Front, Middle ,End

Middle Part: 7 layers

- Start from $r^* = 0.25$, and adjust the value for different parts.
- Try to improve the performance by pruning the less sensitive part more under almost same computation constraint.

CPO step2 Results

Reducing Factor (r) (F, M, E)	Kernel per parts (F, M, E)	Set5 PSNR Drop ↓ (dB)	Set14 PSNR Drop ↓ (dB)	Parameters Remained (%)
(0.25,0.25,0.25)	48, 48, 48	0.19	0.25	56.32 (UR)
(0.44 ,0.18,0.18)	36, 52, 52	0.19	0.23	55.39
(0.44 ,0.12,0.25)	36, 56, 48	0.18	0.20	56.36
(0.12,0.18, 0.44)	56, 52, 36	0.24	0.29	58.60
(0.18,0.18, 0.38)	52, 52, 40	0.30	0.26	57.54
(0.25, 0.44 ,0.06)	48, 36, 60	0.27	0.30	55.94
(0.18, 0.44 ,0.16)	52, 36, 56	0.26	0.30	55.51

- \rightarrow The Front part of VDSR model is less sensitive; therefore, we can increase r_{front} .
- → Use (0.44,0.12,0.25) to prune VDSR can achieve 50% parameters removal and improve the UR performance. (PSNR drop 0.18/0.20)

Conclusion

- Layer-wise kernel removal can remove the redundancy of CNN and at the meantime reduce operations.
- Using Computation-Performance Optimization (CPO) Flow can remove more kernels in the model parts with more redundancy than others.

Extension

- CPO now is empirical, we've extended this work to develop a more systematic CPO flow.
- Have performed new CPO on VGG-19 for Cifar-10 classification.
- Compared with the state-of-the-art kernel removal method.
- Have submitted our extended work to TCAS-1.

Q & A

Thanks for Listening!

Backup

Pruning on VGG-19 of Cifar-10

	Reducing Factor r	Drop(%)	Params Remained	FLOP Remained
Original	0	0%	2.0×10^{7}	4.0×10^{8}
		(Acc: 92.19%)	100%	100%
Uniform	0.125	0.10%	77.86%	76.87%
Removal	0.250	0.54%	58.47%	56.78%
(UR) [13]	0.375	1.36%	41.83%	39.72%
	0.500	3.23%	27.96%	25.70%
	0.625	6.42%	16.83%	14.72%

	$\mathrm{D_{exp}}$	Final Drop	Params Remained	FLOP Remained	
СРО	0.10%	0.06%	26.89%	51.99%	
(ours)	0.54%	0.50%	9.80%	35.02%	
	1.36%	1.35%	5.16%	25.77%	
	3.23%	3.02%	3.42%	20.96%	
	6.42%	6.30%	1.76%	16.76%	

Backup

- VGG-16 on Cifar-10
- Compare with state-of-the-art [4]

Model	Error	FLOP	Pruned	Params	Pruned
VGG-16 [11]	6.75%	3.13×10^{8}		1.5×10^7	
Pruned [11]	6.60%	2.06×10^8	34.2%	5.4×10^6	64.00%
VGG-16	6.22%	3.13×10^{8}		1.5×10^7	
Pruned(CPO)	6.16%	2.09×10^{8}	33.4%	3.2×10^6	78.76 %

