Computation-Performance Optimization of
Convolutional Neural Networks with
Redundant Kernel Removal

Chih-Ting Liu, Yi-Heng Wu,Yu-Sheng Lin, and Shao-Yi Chien
Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University, Taiwan

& 1 ».f A T s
T ISCAS 2018

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
i
O
Q
=
>
—
P

Outline

B Introduction
®m Challenge of IOT+Al

B Pruning

® Proposed Method

®m Layer-wise Kernel Removal
B Computation-Performance Optimization

® Experimental Results
®m Conclusion

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
©
O
i
O
Q
=
>
—
P

Internet of Things (loT)

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
5
O
Q
=
>
-
P

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
i
O
Q
=
>
—
P

Internet of Things (loT) +
Artificial Intelligence (Al)

Future:
Intelligence on Edge Devices

(CPU, ASIC)

Now:
Intelligence on Cloud and Server

(GPU clusters)

|IOT + Edge Al

®m For visual tasks, Convolutional Neural Networks
(CNN) is one of the Al solutions.

m Apply the CNN inference procedure on devices.

® Challenges

> # Parameters of deep CNN.
(138M for VGG-16)

> # Operation of deep CNN.

(Convolution layers)

- Hard to implement on CPU or ASIC
Cost huge (1) data access time and
(2) computation time

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
i
O
Q
=
>
—
P

Goal

® Can we analyze and remove the possible
redundancy of Deep CNN models?

ek |

* Ce—e”

Convolutional and Non-Linear Pooling Flattening

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
©
O
i
O
Q
=
>
—
P

Picture: https://goo.gl/images/oqYcfb ©

Pruning— Related Works

® Parameters-pruning based method [1]
B Remove the parameters with small magnitude.
m Cause sparse weight matrix with same size.

— Reduce parameters. But can Not reduce operations!!

m Kernel-pruning based method [2]

® Remove the entire kernel (filter) when sparsity >
threshold.

— Can reduce operations! (reduction of convolution kernel)

[1] Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances
in neural information processing systems. 2015.

[2] C.-F. Chen, G. G. Lee, V. Sritapan, and C.-Y. Lin, “Deep convolutional neural network on iOS mobile devices,” in
Proc. 2016 IEEE International Workshop on Signal Processing Systems (SiPS). 7

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
i
O
Q
=
>
—
P

Proposed Method

B Based on [2], we make up the disadvantage of manually
determining the threshold when removing kernels.

® Propose (1) Layer-wise Kernel Removal (LKR)

(2) Computation-Performance Optimization Flow (CPO)

(3] [1
(1) |
Trained Kernel Removal Retrain
cny M) | (Computation |) | New Model
Reduction)

Not as expected

Performance
Evaluation

| |

| |

| |

| |

| |

| |

| |

| |

| |

l l l

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| £

| . =l &
“@

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)
O
G
©
O
i
O
Q
=
>
—
P

ational Taiwan University

Layer-wise Kernel Removal

For a specific convolutional layer [,

[th COW

\ N Channels
Original
Convolution
=
9
:% RCXXXY y RNXX’XY’
= .
(e=
(g0)
O
% REXWxH ky
3,
>
E N Kernels 9
P

o]
©
—]
=
Q
)
(%)
>
)
©
=
©
=
S
i®)
Q
=
)
—
P

Layer-wise Kernel Removal

For a specific convolutional layer [,

— Sparsity per kernel :
[th Conv. layer

Ec,h,u U(kl,nchw) # small values

CxW XH «—kernel values

Sl (n) =

Input; _J L,if|z| < M; |«~— mean value of [*"
o(z) = 0, otherwise Conv. layer
RCXXXY) l
) M, — En,c,h,'w |kl,nchw|
N : NxCxWxH ’
REXWxH ky
N Kernels 10

Layer-wise Kernel Removal

For a specific convolutional layer [,

Sparsity
k, 010 | Sort
[th Conv. layer
ka 0.90
RN

© ks 0.95 Sparsity I, Redundancy T
© Input;
=
D
(_% RCXXXY
©
C
©
O AN
= rOwxh | AN | 0.85
)
=
= N Kernels »
pa

o]
©
]
=
Q
)
(%]
>
)
©
=
©
=
S
i®)
Q
=
)
—
P

Layer-wise Kernel Removal

For a specific convolutional layer [,
Sorted Sparsity List

. 0.95 Define reducing factorr; , 0 <r, < 1:
[th Conv. layer : | The proportion of removed kernel.

% 0.90 Given r;, we will remove N1; kernels.
k 0.85

Input; .

RCXXXY

RCXWXH 0.1
N Kernels 12

o]
©
—]
=
Q
)
(%)
>
)
©
=
©
=
S
i®)
Q
=
)
—
P

Layer-wise Kernel Removal

For a specific convolutional layer [,
Sorted Sparsity List

N N\
If N=10,7, = 0.3
k !
[th Conv. layer : 0-95 > Nm =3
NN\
3 kernels be
ke 0.90 removed
N
k 0.85
Input; .
RCXXXY
RCXWXH 0.1

N Kernels

o]
©
—]
=
Q
)
(%)
>
)
©
=
©
=
S
i®)
Q
=
)
—
P

Layer-wise Kernel Removal

For a specific convolutional layer [,

[th Conv. |

ayer

Input;

RCXXXY

RCXWXH

Sorted Sparsity List

—
ks

S\
k2

S\
kn

N Kernels

0.95

0.90

0.85

0.1

If N=10, r, = 0.3

3 kernels be
removed

—_—

Prune

N-N7; Kernels 14

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)
O
G
©
O
i
O
Q
=
>
—
P

Layer-wise Kernel Removal

For a specific convolutional layer [,

[th Conv. layer

RCXXXY

Inptit; \

N-N7; Kernels

Convolution

—_—

Output,;

]RN’xX’xY’

N' =N — Nn,

\ Channels

Summary of LKR

® Given a reducing factor r; for each layer, we can
prune the Conv. layers. (N-N7; kernels left)

®m Fast and Easy.

m If we train from scratch with smaller network, not
use pruning method, it may take time and may not
train successfully.

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
i
O
Q
=
>
—
P

Computation-Performance Optimization
(CPO) Flow

B Monitoring the Performance to adjust the Computation Reduction.

Determine Retrain
S reducing factor Kernel Removal
raine)
Computation
oNN — (Comput: mmm==) | New Model
Reduction)

Not as expected

Performance
Evaluation

o]
©
]
=
Q
)
(%)
>
)
©
=
©
=
S
i®)
Q
=
)
—
P

CPO Flow

m Step 1 - Uniform Removal (UR)

Set equal r; for every layer, obtain the performance drop.
Iteratively take experiments on different uniform 7.

Pick an acceptable ;" among the experiments above.

* “acceptable” depends on the performance requirement by user.

Go to step2 to further adjust 1;° for every layer.

ined Uniform r; Kernel Retrain
Traine Removal o oo
CNN l (Computation
R ion
l acceptable

Performance
Evaluation

Not as expected

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
O
G
©
O
i
O
Q
=
>
—
P

CPO Flow

m Step 2 — Probing Model Sensitivity
m Split model into few parts (ex. front, middle ,end)

® Under same parameters left, find which part is less sensitive 2
Remove more on the part with lower sensitivity.

Increase 1" for one part to probe sensitivity.

decrease 17" for other parts to maintain params left.

Observe the performance drop based on diff. probing.

Choose the new reducing factor with smaller performance drop!

. Adjust 7" Kernel Retrain
Trained ——) Removal ———
CNN (Computation
R ion
l Smaller Drop

Performance
Evaluation

Not as expected

19

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
O
G
©
O
i
O
Q
=
>
—
P

Experimental Results

B CNN model: VDSR (Very Deep Super Resolution) model [3]

m 20 layer fully convolutional Network—> Excluding the influence of FC layers.

Conv.1 ;H” ReLu.1 ’ Conv.D-1 ” ReLu.D-1 ’ Conv.D (Residual)

iR S 5 I PP & g J I
ILR: Interpolated Low HR: High Resolution
Resolution Image Image

® Retrain Epoch: 8
® Evaluation Dataset: (1) Set5 X2 (2) Set14 X2
® Performance Evaluation : PSNR (dB)

[3] Kim et al. "Accurate image super-resolution using very deep convolutional networks." CVPR
2016. 20

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
O
G
©
O
i
O
Q
=
>
—
P

CPO step 1 Result — Uniform Removal(UR)

Kernel per Set14 PSNR | Parameters | FLOP
layer

Original 64 37.50 dB 33.08 dB 6.7 x 10° 1.11x 10°
Reducing | Kernel per | Set5 PSNR | Setl4 PSNR Params FLOP
Factor (r) Iayer Drop J (dB) Drop J (dB) Remained | Remained
0.00 100 (%) 100 (%)
0.12 56 0.13 0.19 76.60 (%) 76.58(%)
O
5 0.19 52 0.21 0.21 66.07 (%) 66.04(%)
;C; 0.25 48 0.19 0.25 56.32 (%) 56.28(%)
A 0.31 44 0.20 0.25 47.34 (%) 47.30(%)
©
= 0.38 40 0.36 0.36 39.15 (%) 39.10(%)
@)
p= 0.44 36 0.40 0.39 31.73 (%) 31.68(%)
k5
=
E 21
pd

CPO step 2 — Probe Model Sensitivity

® Split the model into three parts: Front, Middle ,End
Conv.lﬁ” ReLu.1 * Conv.D-1 ﬂ ReLu.D-l’Conv.D (Residual)

I

End Part: 7 layers
Middle Part: 7 layers

Front Part: 6 layers

m Start from r* = 0.25, and adjust the value for different parts.

® Try to improve the performance by pruning the less sensitive
part more under almost same computation constraint.

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)
O
G
©
O
i
O
Q
=
>
—
P

CPO step?2 Results

Reducing Factor (r)| Kernel per parts | Set5 PSNR Set14 PSNR | Parameters
(F,M,E) (F, M, E) Drop 4 (dB) | Drop { (dB) | Remained (%)

(0.25,0.25,0.25) 48, 48, 48 0.19 0.25 56.32 (UR)
(0.44,0.18,0.18) 36, 52, 52 0.19 0.23 55.39
(0.44,0.12,0.25) 36, 56, 48 ‘ 0.18 0.20 56.36
(0.12,0.18,0.44) 56, 52, 36 0.24 0.29 58.60
(0.18,0.18,0.38) 52,52,40 0.30 0.26 57.54
(0.25,0.44,0.06) 48, 36, 60 0.27 0.30 55.94
(0.18,0.44,0.16) 52, 36, 56 0.26 0.30 55.51

— The Front part of VDSR model is less sensitive; therefore, we can
increase 7fyont-

- Use (0.44,0.12,0.25) to prune VDSR can achieve 50% parameters
removal and improve the UR performance. (PSNR drop 0.18/0.20)

23

O
©
—]
=
Q
)
(%)
>
)
©
=
o
=
S
i®)
Q
=
)
—
P

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)]
©
G
(]
O
i
O
Q
=
>
—
P

Conclusion

B Layer-wise kernel removal can remove the redundancy of
CNN and at the meantime reduce operations.

® Using Computation-Performance Optimization (CPO) Flow
can remove more kernels in the model parts with more
redundancy than others.

Extension

B CPO now is empirical, we’'ve extended this work to develop
a more systematic CPO flow.

® Have performed new CPO on VGG-19 for Cifar-10
classification.

B Compared with the state-of-the-art kernel removal method.
® Have submitted our extended work to TCAS-1.

Q&A

Thanks for Listening!

o]
©
]
=
Q
)
(%]
>
)
©
=
©
=
S
i®)
Q
=
)
—
P

Backup

B Pruning on VGG-19 of Cifar-10

Reducing Drop(%) Params FLOP
Factor r Remained Remained
Original 0 0% 2.0 x 107 4.0 x 108
(Acc: 92.19%) 100% 100%
Uniform 0.125 0.10% 77.86% 76.87%
Removal 0.250 0.54% 58.47% 56.78%
(UR) [13] 0.375 1.36% 41.83% 39.72%
0.500 3.23% 27.96% 25.70%
0.625 6.42% 16.83% 14.72%
o)
©
—
= Dexp Final Params FLOP
% Drop Remained Remained
>
)
©
c
8 CPO 0.10% 0.06% 26.89% 51.99%
(—U (ours) 0.54% 0.50% 9.80% 35.02%
o) 1.36% 1.35% 5.16% 25.77%
% 3.23% 3.02% 3.42% 20.96 %
- 6.42% 6.30% 1.76 % 16.76%
— 26
P

O
(¢v]
—]
=
Q
=
(%]
>
(Vp)
O
G
©
O
i
O
Q
=
>
—
P

Backup

® VGG-16 on Cifar-10

m Compare with state-of-the-art [4]

Model Error FLOP Pruned Params Pruned
VGG-16 [11] 6.75% 3.13 x 108 1.5 x 107
Pruned [11] 6.60% 2.06 x 105 342% 5.4 x 105 64.00%
VGG-16 6.22% 3.13 x 10% 1.5 x 107
Pruned(CPO) 6.16% 2.09 x 105 334% 3.2x 105 78.76%

[4] H. Li, A. Kadav, |. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets,”arXiv preprint arXiv:1608.08710, 2016

