

NTU Supervised Joint Domain Learning for Vehicle Re-Identification

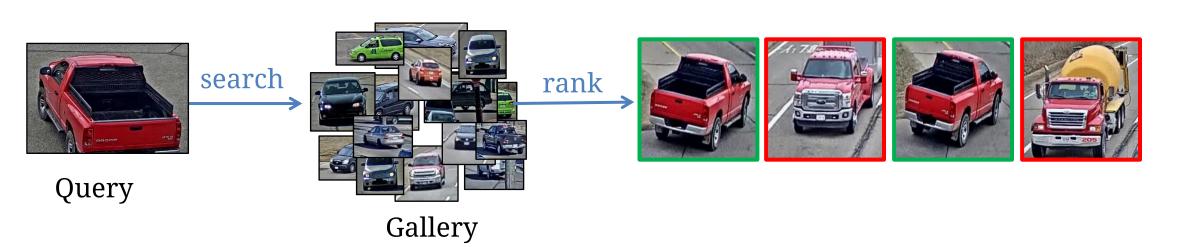
Chih-Ting Liu, Man-Yu Lee, Chih-Wei Wu, Bo-Ying Chen, Tsai-Shien Chen, Yao-Ting Hsu, Shao-Yi Chien NTU IoX Center, National Taiwan University

LONG BEACH CALIFORNIA June 16-20, 2019

NVIDIA AI CITY CHALLENGE

Track2 Problem Statement

- > Vehicle Re-Identification
 - Tracking and identifying moving vehicles across videos captured at multiple locations



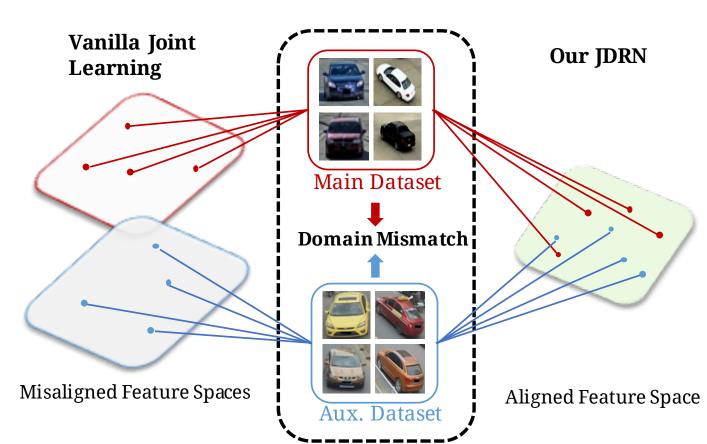
Introduction

- > Challenges
 - Limitation of existing datasets
 - datasets are either too small or with limited diversity
 - Data augmentation using other datasets → Domain mismatch

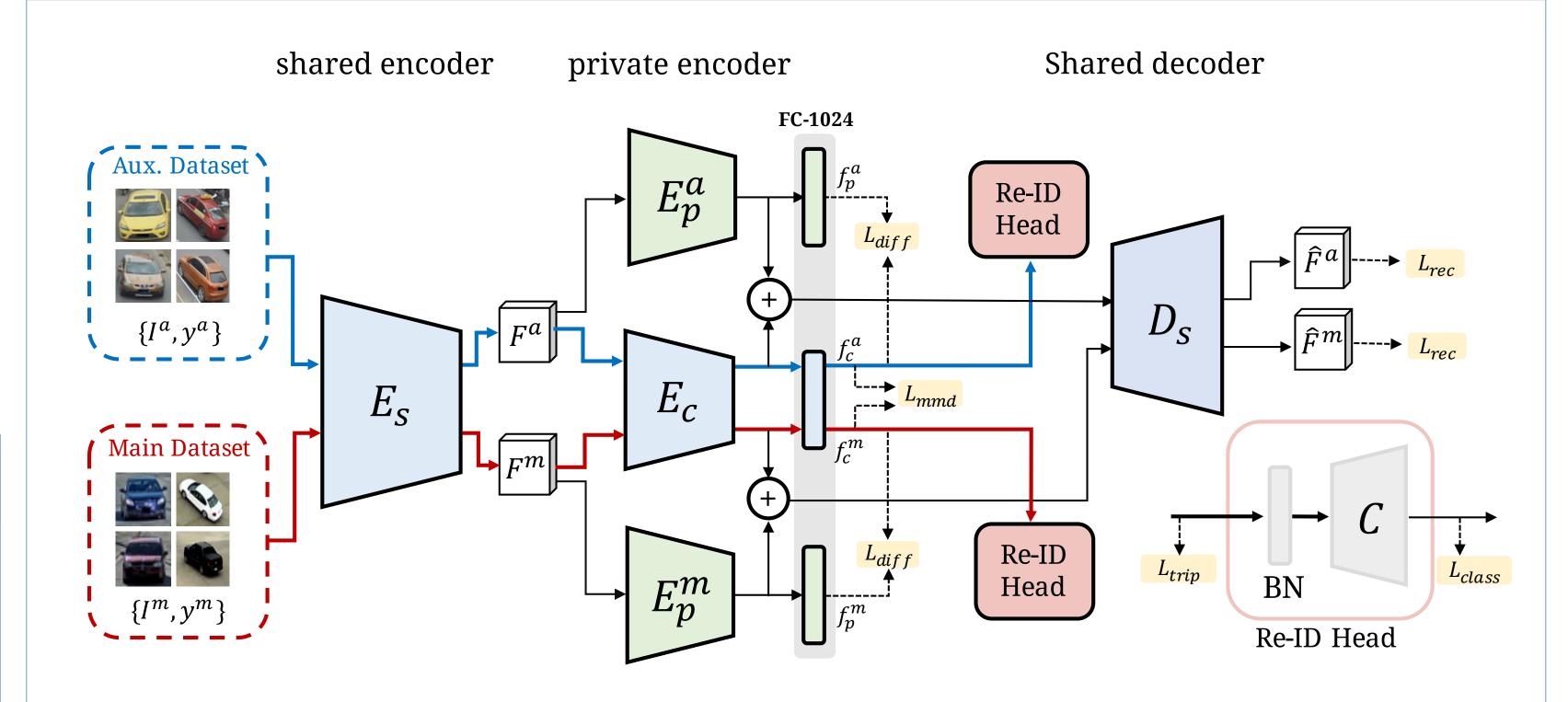


Main Contribution

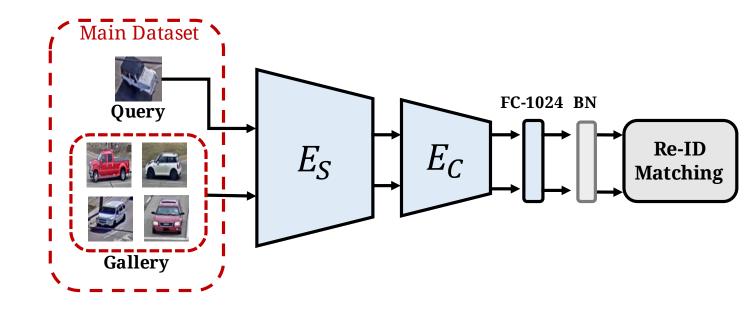
- Jointly learn on multiple datasets to mitigate the limitation of single dataset
- Address the domain mismatch problem using Joint Domain Reidentification Network (JDRN)
- JDRN demonstrates promising performance on vehicle Re-ID datasets



Proposed method



- > Re-ID Feature Learning
- Cross-entropy loss $\mathcal{L}_{class} = -\sum_{i=1}^n y_i \cdot log \hat{y_i}$
- Weighted triplet loss [2] $\mathcal{L}_{trip} = \sum_{a,p,n} F(w_p d(E(I_a), E(I_p)) w_n d(E(I_a), E(I_n)))$, $w_p = \frac{e^{d(f_a, f_p)}}{\sum_{a,p} e^{d(f_a, f_p)}}, w_n = \frac{e^{-d(f_a, f_n)}}{\sum_{a,p} e^{-d(f_a, f_p)}}$
- > Joint Domain Feature Learning
 - Difference loss $\mathcal{L}_{diff} = \|\mathbf{H}_c^{m\top}\mathbf{H}_p^m\|_F^2 + \|\mathbf{H}_c^{a\top}\mathbf{H}_p^a\|_F^2$
- Reconstruction loss $\mathcal{L}_{rec} = \sum_{i=1}^{n_m} \|F_i^m \hat{F}_i^m\|_2^2 + \sum_{i=1}^{n_a} \|F_i^a \hat{F}_i^a\|_2^2$
- MMD loss [3] $\mathcal{L}_{mmd} = \|\frac{1}{n_m} \sum_{i=1}^{n_m} \phi(f_{c,i}^m) \frac{1}{n_a} \sum_{j=1}^{n_a} \phi(f_{c,j}^a) \|_{\mathcal{H}}^2$
- Re-ID inference stage
- Each image in query and gallery set is fed into { Es, Ec } and the Re-ID head
- Matching with cosine similarity



Experiment Results

(a) Comparison with state-of-thearts on VeRi-776 dataset

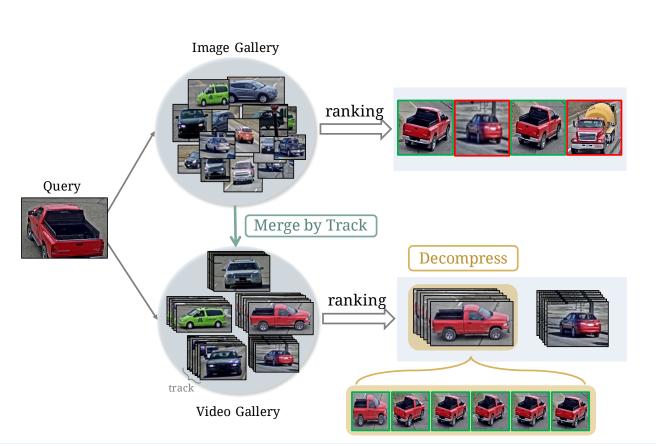
Method	Source	VeRi
	Source	mAP
XVGAN [34]	BMVC17	24.65
FACT+Plate-SNN [14]	ECCV16	25.88
OIFE [24]	ICCV17	51.42
RNN-HA [26]	ACCV18	56.80
S-CNN+Path-LSTM [19]	ICCV17	58.27
VAMI+STR [35]	CVPR18	61.32
Our JDRN	-	69.08
Our JDRN + re-ranking		73.10
	_	

- (c) Submission on AIC2019 track2
 - K-reciprocal re-ranking [4]
 - Ensemble top 3 results
- Video-based inference scheme

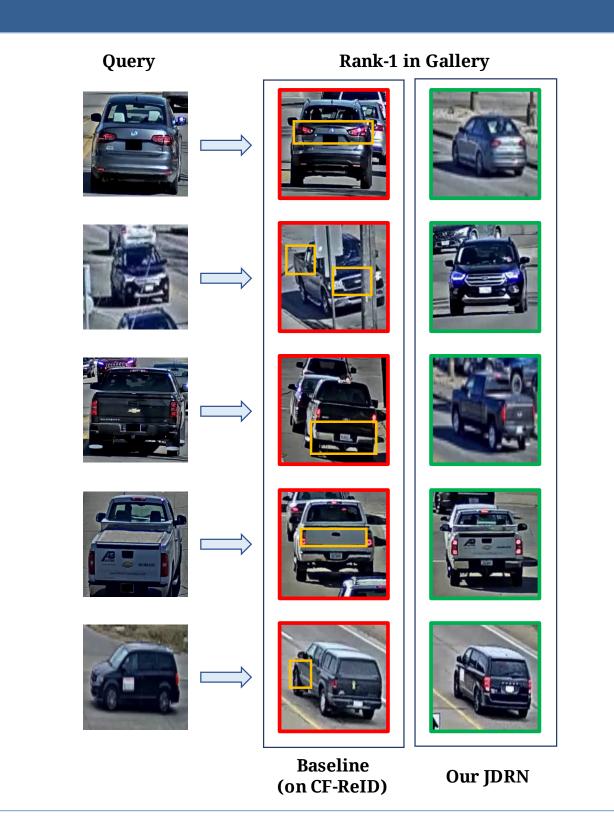
Final score → 49.98% in mAP

(b) Comparisons of different baseline with two training set configuration

Method	Training	CF-ReID	VeRi
Wicthod	set	mAP	mAP
Baseline (E)	Self	36.26	59.94
Baseline (E)	Joint	35.81	56.98
Baseline w/ \mathcal{L}_{mmd}	Joint	32.91	56.97
Our JDRN	Joint	44.14	69.08



Visualization



Reference

- [1] Yu-Jhe Li, *et al.* Adaptation and re-identification network: An unsupervised deep transfer learning approach to person re-identification. CVPRW, 2018.
- [2] Ergys Ristani and Carlo Tomasi. Features for multi-target multi-camera tracking and reidentification.CVPR, 2018.
- [3] Arthur Gretton *et al*. A fast, consistent kernel two sample test. NeurIPS, 2009.
- [4] Zhun Zhong, *et al*. Re-ranking person re-identification with k-reciprocal encoding. CVPR, 2017.