
－Vehicle Re－Identification： Find all vehicles that travel through all 4 locations within surveillance videos

 Frame t Frame $\mathrm{t}+1$
The space－time prior within the videos：
（1）One vehicle can not appear at multiple locations at the same time（Negative pairs） （2）One vehicle should move continuously along the time（Positive pairs）

Adaptive Feature Learning（AFL）：Collect the positive and negative pairs automatically in the target dataset to adapt our trained CNN vehicle feature extractor
 System Pipeline

$>$	Stage 1：Vehicle Proposals：
$>$ Detectron［1］system	
$>$	Stage 2：Single Camera Tracking：
$>$ IOU tracker［2］	
$>$ CNN Feature Matching	

Stage 3：Multi－Camera Matching（track
＞Extract CNN features for each track
$>$ We try 4 methods，Query－Gallery performs best
$\operatorname{car1}(\because \because \operatorname{car} 2$
\qquad
1． K －means Clustering

$\because: \because \because: \because$
K－NN Classification

Multi－Task Vehicle Feature Extractor
＞Use ResNet－50 as backbone feature extractor
＞Use multiple tasks and datasets to jointly train
（1）VeRi Dataset：ID classification

		ID classification
$\square \cdots$	ResNet－50	color classifit
Negative Possitive	same	soft margin triplet loss［3］
2．．．㫜	ResNet－50	color classification

（2）CompCars Dataset： （3）BoxCars Dataset：model classification

ResNet－50 model classification
（4）AIC Test Dataset：use AFL to adapt our CNN model

soft margin triplet loss［3］
（c）Multi－Camera Matching Results Test on AIC Track 3 dataset
TDR：
Prack Detection Rate
PR：
Localization Precision

PR：	Localization Precision		
S3：	0.5^{*}（TDR＋PR）		
Method	TDR \uparrow	PR \uparrow	$\mathrm{S3} \uparrow$
K－Means	0	0.0000	0.0003

$\begin{array}{llll}\begin{array}{llll}\text { K－Means } \\ \text { Bottom－Up } \\ \text { K－Means }\end{array} & 0 & 0.0015 & 0.0007\end{array}$
$\begin{array}{lllll}\text { K－NN } & 0.1429 & 0.0020 & 0.0725\end{array}$

Experiment Results					
（a）Effectiveness of AFL Technique Train on Market－1501 Human Re－ID Test on DukeMTMC－ReID Humam Re－ID			（b）Effectiveness of Multi－Task Training． Test on VeRi vehicle Re－ID dataset （＊uses additional temporal information）		
Method	mAP（\％）\uparrow	Rank－1（\％）\uparrow	Method	$\mathrm{mAP}(\%) \uparrow$	Rank－1（\％）\uparrow
w／o AFL	13.46	25.99	SOTA CNN［4］	29.48	41.12
w／AFL	14.20	28.50	＊SOTA［4］	58.27	83.49
			$\begin{aligned} & \text { Train on } \\ & \text { VeRi (Ours) } \end{aligned}$	53.35	82.06
			Train on all（Ours）	57.43	86.29

（d）LeaderBoard of AIC 2018 Track3

