
Ø Use ResNet-50 as backbone feature extractor
Ø Use multiple tasks and datasets to jointly train

(1) VeRi Dataset:

(2) CompCars Dataset:

(3) BoxCars Dataset:

(4) AIC Test Dataset: use AFL to adapt our CNN model

Ø Stage 1: Vehicle Proposals:
Ø Detectron [1] system

Ø Stage 2: Single Camera Tracking:
Ø IOU tracker [2]
Ø CNN Feature Matching

Ø Stage 3: Multi-Camera Matching (track-based):
Ø Extract CNN features for each track
Ø We try 4methods, Query-Gallery performs best
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Track 3 Problem Statement

Same	vehicle	or	not?

Ø Vehicle Re-Identification:
Find all vehicles that travel through all 4
locations within	surveillance	videos

Loc 1 Loc 2

Loc 3 Loc 4

Ø Challenges:
(1) Lacks	labeled	dataset

àOnly one vehicle Re-ID dataset (VeRi)

(2)	Domain	change

(3)	Intra-Identity variance	

Ø Propose	Adaptive	Feature	Learning (AFL) with space-time prior, for	adapting	trained	CNN	
feature	extractor	to	target domain

Ø Train a CNN feature extractor in amulti-task learning manner and utilize our AFL technique
Ø Develop	an	vehicle	detection,	tracking and Re-ID system
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Ø The	space-time	prior	within	the	videos:
(1)	One	vehicle	can	not	appear	at	multiple	locations	at	the	same	time	(Negative	pairs)
(2)	One	vehicle	should	move	continuously	along	the	time	(Positive	pairs)	

Ø Adaptive	Feature	Learning	(AFL): Collect	the	positive and	negative pairs	automatically	in	the	
target	dataset	to	adapt	our	trained	CNN	vehicle	feature	extractor
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Adaptive	Feature	Learning Supervised	Learning
CNN-based	Vehicle	Feature	Extractor
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Experiment Results

color classification
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Method mAP(%)↑ Rank-1(%)↑

w/o	AFL 13.46 25.99

w/	AFL 14.20 28.50

Method mAP(%)↑ Rank-1(%)↑

SOTA	CNN	[4] 29.48 41.12

*SOTA [4] 58.27 83.49

Train	on	
VeRi (Ours) 53.35 82.06

Train	on	
all (Ours) 57.43 86.29

(a) Effectiveness	of	AFL	Technique
Train onMarket-1501 Human Re-ID
Test on DukeMTMC-ReID Humam Re-ID

(b) Effectiveness of Multi-Task Training.	
Test on VeRi vehicle Re-ID dataset

Method TDR↑ PR↑ S3↑

K-Means 0 0.0006 0.0003

Bottom-Up	
K-Means 0 0.0015 0.0007

K-NN 0.1429 0.0020 0.0725

Query-
Gallery 0.5714 0.0007 0.2861

Team	ID S3↑

team48 0.7106

team37 0.2861

team79 0.0785

team18 0.0074

team28 0.0026

team41 0.0024

team53 0.0002

team6 0.0001

(c) Multi-Camera Matching Results
Test on AIC Track	3	dataset

(d) LeaderBoard of AIC 2018 Track3.

Ours!

Definitely Incorrect
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( *	uses	additional	temporal	information)

Ø Matching Results

Possibly Correct

TDR: Track	Detection	Rate
PR: Localization	Precision
S3: 0.5*(TDR+PR)


